
pygmtools Documentation

Runzhong Wang

Sep 22, 2022

USER GUIDE

1 Backends 3

2 Features 5

3 Benchmarks 7

4 Developers and Maintainers 9
4.1 What is Graph Matching . 9
4.2 Get Started . 12
4.3 Graph Matching Benchmark . 13

i

ii

pygmtools Documentation

pygmtools provides graph matching solvers in Python and is easily accessible via:

pip install pygmtools

USER GUIDE 1

https://pypi.org/project/pygmtools/
https://pypi.org/project/pygmtools/
https://pygmtools.readthedocs.io/en/latest/?badge=latest
https://GitHub.com/Thinklab-SJTU/pygmtools/

pygmtools Documentation

2 USER GUIDE

CHAPTER

ONE

BACKENDS

By default the solvers are executed on the numpy backend, and the required packages will be automatically downloaded.

For advanced and professional users, pytorch/paddle/jittor backends are also available if you have installed
and configured the corresponding runtime. The pytorch/paddle/jittor backends exploit the underlying GPU-
acceleration feature, and also support integrating graph matching modules into your deep learning pipeline.

3

pygmtools Documentation

4 Chapter 1. Backends

CHAPTER

TWO

FEATURES

To highlight, pygmtools has the following features:

• Support various backends, including numpywhich is universally accessible, and some state-of-the-art deep learn-
ing architectures with GPU-support: pytorch/paddle/jittor. The support of the following backends are also
planned: tensorflow, mindspore;

• Support various solvers, including traditional combinatorial solvers and novel deep learning-based solvers;

• Deep learning friendly, the operations are designed to best preserve the gradient during computation and batched
operations support for the best performance.

5

pygmtools Documentation

6 Chapter 2. Features

CHAPTER

THREE

BENCHMARKS

pygmtools is also featured with standard data interface of several graph matching benchmarks. We also maintain a
repository containing non-trivial implementation of deep graph matching models, please check out ThinkMatch if you
are interested!

7

https://thinkmatch.readthedocs.io/

pygmtools Documentation

8 Chapter 3. Benchmarks

CHAPTER

FOUR

DEVELOPERS AND MAINTAINERS

pygmtools is currently developed and maintained by members from ThinkLab at Shanghai Jiao Tong University.

4.1 What is Graph Matching

This page provides some background information for graph matching.

4.1.1 Introduction

Graph Matching (GM) is a fundamental yet challenging problem in pattern recognition, data mining, and others. GM
aims to find node-to-node correspondence among multiple graphs, by solving an NP-hard combinatorial problem.
Recently, there is growing interest in developing deep learning based graph matching methods.

Graph matching techniques have been applied to the following applications:

• Bridging movie and synopses

9

http://thinklab.sjtu.edu.cn
https://openaccess.thecvf.com/content_ICCV_2019/papers/Xiong_A_Graph-Based_Framework_to_Bridge_Movies_and_Synopses_ICCV_2019_paper.pdf

pygmtools Documentation

• Image correspondence

• Molecules matching

• and more. . .

10 Chapter 4. Developers and Maintainers

https://arxiv.org/pdf/1911.11763.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_Combinatorial_Learning_of_Graph_Edit_Distance_via_Dynamic_Embedding_CVPR_2021_paper.pdf

pygmtools Documentation

4.1.2 Graph Matching Pipeline

Solving a real world graph matching problem may involve the following steps:

1. Extract node/edge features from the graphs you want to match.

2. Build affinity matrix from node/edge features.

3. Solve the graph matching problem by GM solvers.

And Step 1 maybe done by methods depending on your application, Step 2&3 can be handled by pygmtools.

4.1.3 The Math Form

Let’s involve a little bit math to better understand the graph matching pipeline. In general, graph matching is of the
following form, known as Quadratic Assignment Problem (QAP):

max
X

vec(X)⊤Kvec(X)

𝑠.𝑡. X ∈ {0, 1}𝑛1×𝑛2 , X1 = 1, X⊤1 ≤ 1

The notations are explained as follows:

• X is known as the permutation matrix which encodes the matching result. It is also the decision variable in
graph matching problem. X𝑖,𝑎 = 1 means node 𝑖 in graph 1 is matched to node 𝑎 in graph 2, and X𝑖,𝑎 = 0
means non-matched. Without loss of generality, it is assumed that 𝑛1 ≤ 𝑛2.X has the following constraints:

– The sum of each row must be equal to 1: X1 = 1;

– The sum of each column must be equal to, or smaller than 1: X1 ≤ 1.

• vec(X) means the column-wise vectorization form of X.

• 1 means a column vector whose elements are all 1s.

• K is known as the affinity matrix which encodes the information of the input graphs. Both node-wise and
edge-wise affinities are encoded in K:

– The diagonal element K𝑖+𝑎×𝑛1,𝑖+𝑎×𝑛1
means the node-wise affinity of node 𝑖 in graph 1 and node 𝑎 in

graph 2;

– The off-diagonal element K𝑖+𝑎×𝑛1,𝑗+𝑏×𝑛1
means the edge-wise affinity of edge 𝑖𝑗 in graph 1 and edge 𝑎𝑏

in graph 2.

4.1.4 Other Materials

Readers are referred to the following surveys for more technical details about graph matching:

• Junchi Yan, Shuang Yang, Edwin Hancock. “Learning Graph Matching and Related Combinatorial Optimization
Problems.” IJCAI 2020.

• Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, Xiaokang Yang. “A Short Survey of
Recent Advances in Graph Matching.” ICMR 2016.

4.1. What is Graph Matching 11

pygmtools Documentation

4.2 Get Started

4.2.1 Basic Install

Install pygmtools is easy:

pip install pygmtools

Now the pygmtools is available with the numpy backend. You may jump to Example: Matching Isomorphic Graphs if
you do not need other backends.

The following packages are required, and shall be automatically downloaded by pip install:

• Python >= 3.5

• requests >= 2.25.1

• scipy >= 1.4.1

• Pillow >= 7.2.0

• numpy >= 1.18.5

• easydict >= 1.7

4.2.2 Install Other Backends

Currently, we also support deep learning architectures pytorch/paddle/jittor which are GPU-friendly and deep
learning-friendly. The support of the following backends are also planned: tensorflow, mindspore.

Please follow the install instructions on your backend.

Once the backend is ready, you may switch to the backend globally by the following command:

>>> import pygmtools as pygm
>>> pygm.BACKEND = 'pytorch' # replace 'pytorch' by other backend names

4.2.3 Example: Matching Isomorphic Graphs

Here we provide a basic example of matching two isomorphic graphs (i.e. two graphs have the same nodes and edges,
but the node permutations are unknown).

Step 0: Import packages and set backend

>>> import numpy as np
>>> import pygmtools as pygm
>>> pygm.BACKEND = 'numpy'
>>> np.random.seed(1)

Step 1: Generate a batch of isomorphic graphs

>>> batch_size = 3
>>> X_gt = np.zeros((batch_size, 4, 4))
>>> X_gt[:, np.arange(0, 4, dtype=np.int64), np.random.permutation(4)] = 1
>>> A1 = np.random.rand(batch_size, 4, 4)

(continues on next page)

12 Chapter 4. Developers and Maintainers

pygmtools Documentation

(continued from previous page)

>>> A2 = np.matmul(np.matmul(X_gt.transpose((0, 2, 1)), A1), X_gt)
>>> n1 = n2 = np.repeat([4], batch_size)

Step 2: Build affinity matrix and select an affinity function

>>> conn1, edge1, ne1 = pygm.utils.dense_to_sparse(A1)
>>> conn2, edge2, ne2 = pygm.utils.dense_to_sparse(A2)
>>> import functools
>>> gaussian_aff = functools.partial(pygm.utils.gaussian_aff_fn, sigma=1.) # set␣
→˓affinity function
>>> K = pygm.utils.build_aff_mat(None, edge1, conn1, None, edge2, conn2, n1, ne1, n2,␣
→˓ne2, edge_aff_fn=gaussian_aff)

Step 3: Solve graph matching by RRWM

>>> X = pygm.rrwm(K, n1, n2, beta=100)
>>> X = pygm.hungarian(X)
>>> X # X is the permutation matrix
[[[0. 0. 0. 1.]
[0. 0. 1. 0.]
[1. 0. 0. 0.]
[0. 1. 0. 0.]]

[[0. 0. 0. 1.]
[0. 0. 1. 0.]
[1. 0. 0. 0.]
[0. 1. 0. 0.]]

[[0. 0. 0. 1.]
[0. 0. 1. 0.]
[1. 0. 0. 0.]
[0. 1. 0. 0.]]]

Final Step: Evaluate the accuracy

>>> (X * X_gt).sum() / X_gt.sum()
1.0

4.3 Graph Matching Benchmark

pygmtools also provides a protocol to fairly compare existing deep graph matching algorithms under different datasets
& experiment settings. The Benchmarkmodule provides a unified data interface and an evaluating platform for different
datasets. Currently, pygmtools supports 5 datasets:

• PascalVOC

• Willow-Object

• SPair-71k

• CUB2011

• IMC-PT-SparseGM

4.3. Graph Matching Benchmark 13

pygmtools Documentation

4.3.1 Files

• dataset.py: The file includes 5 dataset classes, used to automatically download dataset and process the dataset
into a json file, and also save train set and test set.

• benchmark.py: The file includes Benchmark class that can be used to fetch data from json file and evaluate
prediction result.

• dataset_config.py: Fixed dataset settings, mostly dataset path and classes.

4.3.2 Notes

• Our evaluation metrics include matching_precision (p), matching_recall (r) and f1_score (f1). Also, to mea-
sure the reliability of the evaluation result, we define coverage (cvg) for each class in the dataset as the number of
evaluated pairs in the class / number of all possible pairs in the class. Therefore, larger coverage refers to higher
reliability.

• Dataset can be automatically downloaded and unzipped, but you can also download the dataset yourself, and
make sure it in the right path. The expected dataset paths are listed as follows.

Pascal VOC 2011 dataset with keypoint annotations
PascalVOC.ROOT_DIR = 'data/PascalVOC/TrainVal/VOCdevkit/VOC2011/'
PascalVOC.KPT_ANNO_DIR = 'data/PascalVOC/annotations/'

Willow-Object Class dataset
WillowObject.ROOT_DIR = 'data/WillowObject/WILLOW-ObjectClass'

CUB2011 dataset
CUB2011.ROOT_PATH = 'data/CUB_200_2011/CUB_200_2011'

SWPair-71 Dataset
SPair.ROOT_DIR = "data/SPair-71k"

IMC_PT_SparseGM dataset
IMC_PT_SparseGM.ROOT_DIR_NPZ = 'data/IMC-PT-SparseGM/annotations'
IMC_PT_SparseGM.ROOT_DIR_IMG = 'data/IMC-PT-SparseGM/images'

Specifically, for PascalVOC, you should download the train/test split yourself, and make sure it looks like data/
PascalVOC/voc2011_pairs.npz

4.3.3 Example

from pygmtools.benchmark import Benchmark

Define Benchmark on PascalVOC.
bm = Benchmark(name='PascalVOC', sets='train',

obj_resize=(256, 256), problem='2GM',
filter='intersection')

Random fetch data and ground truth.
data_list, gt_dict, _ = bm.rand_get_data(cls=None, num=2)

14 Chapter 4. Developers and Maintainers

	Backends
	Features
	Benchmarks
	Developers and Maintainers
	What is Graph Matching
	Introduction
	Graph Matching Pipeline
	The Math Form
	Other Materials

	Get Started
	Basic Install
	Install Other Backends
	Example: Matching Isomorphic Graphs

	Graph Matching Benchmark
	Files
	Notes
	Example

