pygmtools.classic_solvers.sm

pygmtools.classic_solvers.sm(K, n1=None, n2=None, n1max=None, n2max=None, x0=None, max_iter: int = 50, backend=None)[source]

Spectral Graph Matching solver for graph matching (QAP). This algorithm is also known as Power Iteration method, because it works by computing the leading eigenvector of the input affinity matrix by power iteration.

For each iteration,

\[\mathbf{v}_{k+1} = \mathbf{K} \mathbf{v}_k / ||\mathbf{K} \mathbf{v}_k||_2\]
Parameters
  • K\((b\times n_1n_2 \times n_1n_2)\) the input affinity matrix, \(b\): batch size.

  • n1\((b)\) number of nodes in graph1 (optional if n1max is given, and all n1=n1max).

  • n2\((b)\) number of nodes in graph2 (optional if n2max is given, and all n2=n2max).

  • n1max\((b)\) max number of nodes in graph1 (optional if n1 is given, and n1max=max(n1)).

  • n2max\((b)\) max number of nodes in graph2 (optional if n2 is given, and n2max=max(n2)).

  • x0\((b\times n_1 \times n_2)\) an initial matching solution for warm-start. If not given, x0 will be randomly generated.

  • max_iter – (default: 50) max number of iterations. More iterations will help the solver to converge better, at the cost of increased inference time.

  • backend – (default: pygmtools.BACKEND variable) the backend for computation.

Returns

\((b\times n_1 \times n_2)\) the solved doubly-stochastic matrix

Example for numpy backend:

>>> import numpy as np
>>> import pygmtools as pygm
>>> pygm.BACKEND = 'numpy'
>>> np.random.seed(1)

# Generate a batch of isomorphic graphs
>>> batch_size = 10
>>> X_gt = np.zeros((batch_size, 4, 4))
>>> X_gt[:, np.arange(0, 4, dtype=np.int64), np.random.permutation(4)] = 1
>>> A1 = np.random.rand(batch_size, 4, 4)
>>> A2 = np.matmul(np.matmul(X_gt.transpose((0, 2, 1)), A1), X_gt)
>>> n1 = n2 = np.repeat([4], batch_size)

# Build affinity matrix
>>> conn1, edge1, ne1 = pygm.utils.dense_to_sparse(A1)
>>> conn2, edge2, ne2 = pygm.utils.dense_to_sparse(A2)
>>> import functools
>>> gaussian_aff = functools.partial(pygm.utils.gaussian_aff_fn, sigma=1.) # set affinity function
>>> K = pygm.utils.build_aff_mat(None, edge1, conn1, None, edge2, conn2, n1, None, n2, None, edge_aff_fn=gaussian_aff)

# Solve by SM. Note that X is normalized with a squared sum of 1
>>> X = pygm.sm(K, n1, n2)
>>> (X ** 2).sum(axis=(1, 2))
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

# Accuracy
>>> (pygm.hungarian(X) * X_gt).sum() / X_gt.sum()
1.0

Example for Pytorch backend:

>>> import torch
>>> import pygmtools as pygm
>>> pygm.BACKEND = 'pytorch'
>>> _ = torch.manual_seed(1)

# Generate a batch of isomorphic graphs
>>> batch_size = 10
>>> X_gt = torch.zeros(batch_size, 4, 4)
>>> X_gt[:, torch.arange(0, 4, dtype=torch.int64), torch.randperm(4)] = 1
>>> A1 = torch.rand(batch_size, 4, 4)
>>> A2 = torch.bmm(torch.bmm(X_gt.transpose(1, 2), A1), X_gt)
>>> n1 = n2 = torch.tensor([4] * batch_size)

# Build affinity matrix
>>> conn1, edge1, ne1 = pygm.utils.dense_to_sparse(A1)
>>> conn2, edge2, ne2 = pygm.utils.dense_to_sparse(A2)
>>> import functools
>>> gaussian_aff = functools.partial(pygm.utils.gaussian_aff_fn, sigma=1.) # set affinity function
>>> K = pygm.utils.build_aff_mat(None, edge1, conn1, None, edge2, conn2, n1, None, n2, None, edge_aff_fn=gaussian_aff)

# Solve by SM. Note that X is normalized with a squared sum of 1
>>> X = pygm.sm(K, n1, n2)
>>> (X ** 2).sum(dim=(1, 2))
tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
        1.0000])

# Accuracy
>>> (pygm.hungarian(X) * X_gt).sum() / X_gt.sum()
tensor(1.)

# This solver supports gradient back-propogation
>>> K = K.requires_grad_(True)
>>> pygm.sm(K, n1, n2).sum().backward()
>>> len(torch.nonzero(K.grad))
2560

Note

If you find this graph matching solver useful for your research, please cite:

@inproceedings{sm,
  title={A spectral technique for correspondence problems using pairwise constraints},
  author={Leordeanu, Marius and Hebert, Martial},
  year={2005},
  pages={1482-1489},
  booktitle={International Conference on Computer Vision},
  publisher={IEEE}
}