Numpy Backend Example: Discovering Subgraphs

This example shows how to match a smaller graph to a subset of a larger graph.

# Author: Runzhong Wang <runzhong.wang@sjtu.edu.cn>
#         Qi Liu <purewhite@sjtu.edu.cn>
#
# License: Mulan PSL v2 License

Note

The following solvers are included in this example:

import numpy as np # numpy backend
import pygmtools as pygm
import matplotlib.pyplot as plt # for plotting
from matplotlib.patches import ConnectionPatch # for plotting matching result
import networkx as nx # for plotting graphs
pygm.set_backend('numpy') # set default backend for pygmtools
np.random.seed(1) # fix random seed

Generate the larger graph

num_nodes2 = 10
A2 = np.random.rand(num_nodes2, num_nodes2)
A2 = (A2 + A2.T > 1.) * (A2 + A2.T) / 2
np.fill_diagonal(A2, 0)
n2 = np.array([num_nodes2])

Generate the smaller graph

num_nodes1 = 5
G2 = nx.from_numpy_array(A2)
pos2 = nx.spring_layout(G2)
pos2_t = np.array([pos2[_] for _ in range(num_nodes2)])
selected = [0] # build G1 as a cluster in visualization
unselected = list(range(1, num_nodes2))
while len(selected) < num_nodes1:
    dist = np.sum(np.sum(np.abs(np.expand_dims(pos2_t[selected], 1) - np.expand_dims(pos2_t[unselected], 0)), axis=-1), axis=0)
    select_id = unselected[np.argmin(dist).item()] # find the closest node from unselected
    selected.append(select_id)
    unselected.remove(select_id)
selected.sort()
A1 = A2[selected, :][:, selected]
X_gt = np.eye(num_nodes2)[selected, :]
n1 = np.array([num_nodes1])

Visualize the graphs

G1 = nx.from_numpy_array(A1)
pos1 = {_: pos2[selected[_]] for _ in range(num_nodes1)}
color1 = ['#FF5733' for _ in range(num_nodes1)]
color2 = ['#FF5733' if _ in selected else '#1f78b4' for _ in range(num_nodes2)]
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.title('Subgraph 1')
plt.gca().margins(0.4)
nx.draw_networkx(G1, pos=pos1, node_color=color1)
plt.subplot(1, 2, 2)
plt.title('Graph 2')
nx.draw_networkx(G2, pos=pos2, node_color=color2)
Subgraph 1, Graph 2

We then show how to automatically discover the matching by graph matching.

Build affinity matrix

To match the larger graph and the smaller graph, we follow the formulation of Quadratic Assignment Problem (QAP):

\[\begin{split}&\max_{\mathbf{X}} \ \texttt{vec}(\mathbf{X})^\top \mathbf{K} \texttt{vec}(\mathbf{X})\\ s.t. \quad &\mathbf{X} \in \{0, 1\}^{n_1\times n_2}, \ \mathbf{X}\mathbf{1} = \mathbf{1}, \ \mathbf{X}^\top\mathbf{1} \leq \mathbf{1}\end{split}\]

where the first step is to build the affinity matrix (\(\mathbf{K}\))

conn1, edge1 = pygm.utils.dense_to_sparse(A1)
conn2, edge2 = pygm.utils.dense_to_sparse(A2)
import functools
gaussian_aff = functools.partial(pygm.utils.gaussian_aff_fn, sigma=.001) # set affinity function
K = pygm.utils.build_aff_mat(None, edge1, conn1, None, edge2, conn2, n1, None, n2, None, edge_aff_fn=gaussian_aff)

Visualization of the affinity matrix. For graph matching problem with \(N_1\) and \(N_2\) nodes, the affinity matrix has \(N_1N_2\times N_1N_2\) elements because there are \(N_1^2\) and \(N_2^2\) edges in each graph, respectively.

Note

The diagonal elements of the affinity matrix is empty because there is no node features in this example.

plt.figure(figsize=(4, 4))
plt.title(f'Affinity Matrix (size: {K.shape[0]}$\\times${K.shape[1]})')
plt.imshow(K, cmap='Blues')
Affinity Matrix (size: 50$\times$50)
<matplotlib.image.AxesImage object at 0x7f2254aa6a70>

Solve graph matching problem by RRWM solver

See rrwm() for the API reference.

X = pygm.rrwm(K, n1, n2)

The output of RRWM is a soft matching matrix. Visualization:

plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.title('RRWM Soft Matching Matrix')
plt.imshow(X, cmap='Blues')
plt.subplot(1, 2, 2)
plt.title('Ground Truth Matching Matrix')
plt.imshow(X_gt, cmap='Blues')
RRWM Soft Matching Matrix, Ground Truth Matching Matrix
<matplotlib.image.AxesImage object at 0x7f21fd48d1e0>

Get the discrete matching matrix

Hungarian algorithm is then adopted to reach a discrete matching matrix

X = pygm.hungarian(X)

Visualization of the discrete matching matrix:

plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.title(f'RRWM Matching Matrix (acc={(X * X_gt).sum()/ X_gt.sum():.2f})')
plt.imshow(X, cmap='Blues')
plt.subplot(1, 2, 2)
plt.title('Ground Truth Matching Matrix')
plt.imshow(X_gt, cmap='Blues')
RRWM Matching Matrix (acc=1.00), Ground Truth Matching Matrix
<matplotlib.image.AxesImage object at 0x7f22330d9240>

Match the subgraph

Draw the matching:

plt.figure(figsize=(8, 4))
plt.suptitle(f'RRWM Matching Result (acc={(X * X_gt).sum()/ X_gt.sum():.2f})')
ax1 = plt.subplot(1, 2, 1)
plt.title('Subgraph 1')
plt.gca().margins(0.4)
nx.draw_networkx(G1, pos=pos1, node_color=color1)
ax2 = plt.subplot(1, 2, 2)
plt.title('Graph 2')
nx.draw_networkx(G2, pos=pos2, node_color=color2)
for i in range(num_nodes1):
    j = np.argmax(X[i]).item()
    con = ConnectionPatch(xyA=pos1[i], xyB=pos2[j], coordsA="data", coordsB="data",
                          axesA=ax1, axesB=ax2, color="green" if X_gt[i,j] == 1 else "red")
    plt.gca().add_artist(con)
RRWM Matching Result (acc=1.00), Subgraph 1, Graph 2

Other solvers are also available

Classic IPFP solver

See ipfp() for the API reference.

X = pygm.ipfp(K, n1, n2)
/home/wzever/pygmtools/pygmtools/numpy_backend.py:304: RuntimeWarning: invalid value encountered in divide
  t0 = alpha / beta

Visualization of IPFP matching result:

plt.figure(figsize=(8, 4))
plt.suptitle(f'IPFP Matching Result (acc={(X * X_gt).sum()/ X_gt.sum():.2f})')
ax1 = plt.subplot(1, 2, 1)
plt.title('Subgraph 1')
plt.gca().margins(0.4)
nx.draw_networkx(G1, pos=pos1, node_color=color1)
ax2 = plt.subplot(1, 2, 2)
plt.title('Graph 2')
nx.draw_networkx(G2, pos=pos2, node_color=color2)
for i in range(num_nodes1):
    j = np.argmax(X[i]).item()
    con = ConnectionPatch(xyA=pos1[i], xyB=pos2[j], coordsA="data", coordsB="data",
                          axesA=ax1, axesB=ax2, color="green" if X_gt[i,j] == 1 else "red")
    plt.gca().add_artist(con)
IPFP Matching Result (acc=1.00), Subgraph 1, Graph 2

Classic SM solver

See sm() for the API reference.

X = pygm.sm(K, n1, n2)
X = pygm.hungarian(X)

Visualization of SM matching result:

plt.figure(figsize=(8, 4))
plt.suptitle(f'SM Matching Result (acc={(X * X_gt).sum()/ X_gt.sum():.2f})')
ax1 = plt.subplot(1, 2, 1)
plt.title('Subgraph 1')
plt.gca().margins(0.4)
nx.draw_networkx(G1, pos=pos1, node_color=color1)
ax2 = plt.subplot(1, 2, 2)
plt.title('Graph 2')
nx.draw_networkx(G2, pos=pos2, node_color=color2)
for i in range(num_nodes1):
    j = np.argmax(X[i]).item()
    con = ConnectionPatch(xyA=pos1[i], xyB=pos2[j], coordsA="data", coordsB="data",
                          axesA=ax1, axesB=ax2, color="green" if X_gt[i,j] == 1 else "red")
    plt.gca().add_artist(con)
SM Matching Result (acc=1.00), Subgraph 1, Graph 2

NGM neural network solver

See ngm() for the API reference.

Note

The NGM solvers are pretrained on a different problem setting, so their performance may seem inferior. To improve their performance, you may change the way of building affinity matrices, or try finetuning NGM on the new problem.

X = pygm.ngm(K, n1, n2, pretrain='voc')
X = pygm.hungarian(X)

Visualization of NGM matching result:

plt.figure(figsize=(8, 4))
plt.suptitle(f'NGM Matching Result (acc={(X * X_gt).sum()/ X_gt.sum():.2f})')
ax1 = plt.subplot(1, 2, 1)
plt.title('Subgraph 1')
plt.gca().margins(0.4)
nx.draw_networkx(G1, pos=pos1, node_color=color1)
ax2 = plt.subplot(1, 2, 2)
plt.title('Graph 2')
nx.draw_networkx(G2, pos=pos2, node_color=color2)
for i in range(num_nodes1):
    j = np.argmax(X[i]).item()
    con = ConnectionPatch(xyA=pos1[i], xyB=pos2[j], coordsA="data", coordsB="data",
                          axesA=ax1, axesB=ax2, color="green" if X_gt[i,j] == 1 else "red")
    plt.gca().add_artist(con)
NGM Matching Result (acc=0.80), Subgraph 1, Graph 2

Total running time of the script: (0 minutes 0.511 seconds)

Gallery generated by Sphinx-Gallery